Dynamics of proteins by NMR

Correlation Functions of Small and Large Molecules

- -slow fluctuations
- -large molecules
- -low temperature
- -high viscosity
- -longer τ_c

- -fast fluctuations
- -small molecules
- -high temperature
- -low viscosity
- -shorter τ_c

Protein Dynamics by NMR: relaxation rates

Protein Dynamics by NMR: relaxation rates

Catabolite activator protein (CAPN)

Molecular dynamics (spin-relaxation)

Molecular dynamics (spin-relaxation)

Ring and chain conformations and dynamics of native SF, SG and derived oligosaccharides

Dynamics determined by ¹H1 spin-relaxation

Table III.

Longitudinal spin relaxation (T_1) (in s) of the anomeric 1 H signals of Lv I, Lv II and Lv III signals from the oligosaccharide mixture from Structure 2

	¹ H T ₁ (s) ^a				
	298 K	310 K	323 K		
Anomeric unit (sulfation type)	Lv I (octasaccharide, Structure 1)				
A H1 (2-sulfated)	1.13	1.15	1.31		
B H1 (2,4-disulfated)	1.06	1.07	1.30		
C H1 (2-sulfated)	1.17	1.23	1.31		
D H1 (4-sulfated)	1.26	1.30	1.36		
A' H1 (unsulfated)	1.30	1.36	1.37		

GLYCOBIOLOGY

Ismael NL Queiroz et al. Glycobiology 2015;25:535-547

Ring and chain conformations and dynamics of native SF, SG and derived oligosaccharides

Ring and chain conformations and <u>dynamics</u> of native SF, SG and derived oligosaccharides

Counterion effects (Na⁺, Ca²⁺, Li⁺)

Table VI Spin-spin relaxation rate (R_2) and rotational spin-lattice relaxation rate (R_{1p}) (in sec⁻¹) of the anomeric ¹H signals from the differently sulfated Fuc*p* units in the Na⁺-, Ca²⁺- and Li⁺-substituted sulfated fucan preparations at two different temperatures (298 and 310 K) at a Bruker 600 MHz.

	Signals -	¹ H R ₂ (s	¹ H R ₂ (s ⁻¹) ^a		$^{1}H R_{1}\rho (s^{-1})^{b}$				
		298K	310K	Signals -	298K	310K			
	Na⁺-sulfated fucan			Na ⁻	Na ⁺ -sulfated fucan				
	A _{H1} /B _{H1}	$257.7 \pm \! 3$	227.3 ±5	A _{H1} /B _{H1}	102.6 ± 3	98.7 ±4			
	C_{H1}	$283.8 \pm \! 5$	$244.4 \pm\! 6$	C_{H1}	$109.7 \pm \! 4$	$99.6 \pm \! 1$			
	D_{H1}	272.5 ±5	237.0 ± 5	D_{H^1}	106.5 ± 2	$88.7 \pm \! 2$			
	Ca ²⁺ -sulfated fucan			Ca ²	Ca ²⁺ -sulfated fucan				
	A_{H1}/B_{H1}	166.6 ± 9	$160.2 \pm \! 3$	A _{H1} /B _{H1}	88.8 ±4	87.9 ±1			
	C_{H1}	$189.5 \pm\! 6$	177.4 ± 14	C_{H1}	91.0 ± 4	$90.9 \pm \! 3$			
	D_{H1}	$182.3 \pm\! 6$	178.3 ± 13	D _{H1}	92.9 ± 2	88.7 ±2			
	Li⁺-sulfated fucan			Li+	Li⁺-sulfated fucan				
_ 	A _{H1} /B _{H1}	208.7 ±3	179.2 ±4	A _{H1} /B _{H1}	$96.9 \pm \! 3$	$84.1 \pm \! 2$			
	C_{H1}	240.5 ± 12	204.0 ±10	C_{H1}	$101.2 \pm \! 2$	$88.1 \pm \! 3$			
	D _{H1}	213.1 ±7	186.5 ±4	D _{H1}	99.4 ± 4	$87.1 \pm\! 6$			

Ring and chain conformations and dynamics of native SF, SG and derived oligosaccharides

Conformation and dynamics of oligosaccharides from the 3-linked 2-sulfated alpha-L-SF (*S. franciscanus*) and alpha-L-SG (*E. lucunter*) with similar MWs

Table III. Spin-lattice (R_1) and spin-spin (R_2) relaxation rates (both measured in s⁻¹) measured at 298 K for the fractionated oligosaccharides *S.f.* XII and *S.f.* VIII, and the mixtures of unfractionated oligosaccharides, *S.f.* Hd and *E.I.* Hd, produced respectively from the hydrolyzed SF and SG samples

Туре	Resonance	R_1^*	R_2^b	Resonance	R_2
S.f. Hd	A1	0.8	32,2	B1	36.0
	A2	0.5	35.5	B2	36.6
	A3/A4	0.5	36.6	B3/B4	39.8
	A5	0.7	35.1	B5	41.0
	A6	0.7	33.6	B6	32.2
S.f. XII	A1	0.4	26.3	B1	35.4
	A2	0.5	27.5	B2	33.5
	A3/A4	0.3	20.9	B3/B4	34.0
	A5	1.0	25.4	B5	35.4
	A6	0.3	22.0	B6	36.8
S.f. VIII	A1	0.8	30.0	B1	38.5
	A2	Ndc	37.2	B2	35.5
	A3/A4	0.6	29.4	B3/B4	35.3
	A5	Nd	32.9	B5	32.5
	A6	0.6	35.0	B6	46.5
E.l. Hd	A1	1.2	41.3	B1	42.4
	A2	1.4	34.4	B2	44.4
	A3	1.6	Nd	B3	52.0
	A4	1.6	32.6	B4	41.8
	A5	1.5	37.6	B5	Nd
	A6	1.0	39.9	B6	48.6

 a Longitudinal relaxation rates (R_{1}) were measured from $1/T_{1}$ of each resonance after applying NMR 1D 1 H inversion recovery experiment as described in Materials and methods.

^bTransverse relaxation rates (R_2) were measured as ¹H1-linewidths ($v_{1/2}$, width at half height) of each resonance using the following equations: $v_{1/2} = 1/\pi T_2 \rightarrow R_2 = 1/T_2$, ($v_{1/2}$ in Hz, T_2 in s, and R_2 in s⁻¹).

Not determined.

GLYCOBIOLOGY

Ismael NL Queiroz et al. Glycobiology 2016; 6:1257-1264

FUCANOMICS & GALACTANOMICS: STRUCTURE vs FUNCTION

Structure-anticoagulant activity relationship: SUGAR TYPE-DEPENDENT ACTION

FUCANOMICS & GALACTANOMICS: STRUCTURE vs FUNCTION

Table I. Anticoagulant Activities of Marine Invertebrate and Algal Sulfated Fucans and Sulfated Galactans Measured by APTT^a and by IC₅₀ for Thrombin (IIa) and Factor Xa Inhibition in the Presence of Antithrombin (AT) or Heparin Cofactor II (HCII)21, 48

	Source	Structure (Figure)	APTT (IU mg ⁻¹)	IC ₅₀ (µg mI ⁻¹)		
Polysaccharide				IIa/AT	IIa/HCII	Xa/AT
3-Linked sulfated α-L-fucans	S. purpuratus (I)	1E-I	76	0.3	0.3	2
	S. purpuratus (II)	1E-II	10	0.9	2	ND
	S. pallidus	1C	18	>500	>500	>500
	L. variegatus	1B	3	>500	>500	>500
	S. franciscanus	1G	~2	>500	>500	250
	L. grisea	1A	<1	>500	>500	>500
4-Linked sulfated α-L-fucans	S. droebachiensis	1F	<1	ND	ND	ND
	A. lixula	1D	~2	150	150	>500
Sulfated α-L-galactans	E. lucunter	2A	20	3	6	20
	H. monus	2C	~2	>500	>500	>500
	S. plicata	2B	<1	>500	>500	>500
Algal sulfated galactans 15, 19	B. occidentalis	2D	93	0.02	1.1	2.5
	G. crinale		65	0.02	25	1.5

a The activity is expressed as international U mg⁻¹ using a parallel standard curve based on the International Heparin Standard (193 U mg⁻¹).

FUCANOMICS & GALACTANOMICS: STRUCTURE vs FUNCTION

Structure-anticoagulant activity relationship: CONFORMATIONAL BINDING PREFERENCE

Structures of the complexes between different SP (red, yellow) and AT (blue). (A) ternary complex between AT, thrombin (gold) and a heparin hexadecasaccharide (PDB ID 1TB6); (B) AT bonded to the synthetic pentasaccharide (PDB ID 1E03); (C) final structure from a 5 ns MD of AT complexed to a SF decasaccharide with pyranose rings; (D) final structure from a 5 ns MD of AT complexed to a SG decasaccharide with pyranose rings. For (B)–(D), two orientations of the complexes are presented.

Vitor H. Pomin – Marine Regular Sulfated Homopolysaccharides. Biopolymers 2009, Volume 91, Issue 8:601-609.

Bloch equations of motion (T₁ and T₂)

 Relaxation processes occur during precession, so the Bloch equations are typically written to account for relaxation

$$\frac{dM}{dt} = \gamma \vec{M}(t) \times \vec{B} - (M_z - M_0)(1/T_1) - M_{x,y}(1/T_2)$$

 The component equations are then written as shown, and simplified assuming B_x = B_y = 0, and B_z = B₀

$$\begin{split} \frac{dM_{x}}{dt} &= \gamma \Big(M_{y}(t) B_{z} - M_{z}(t) B_{y} \Big) - \frac{M_{x}(t)}{T_{2}} = \gamma M_{y}(t) B_{0} - \frac{M_{x}(t)}{T_{2}} \\ \frac{dM_{y}}{dt} &= \gamma \Big(M_{z}(t) B_{x} - M_{x}(t) B_{z} \Big) - \frac{M_{y}(t)}{T_{2}} = -\gamma M_{x}(t) B_{0} - \frac{M_{y}(t)}{T_{2}} \\ \frac{dM_{z}}{dt} &= \gamma \Big(M_{x}(t) B_{y} - M_{y}(t) B_{x} \Big) - \frac{M_{z}(t) - M_{0}}{T_{1}} = -\frac{M_{z}(t) - M_{0}}{T_{1}} \end{split}$$

Bloch equations of motion (T₂)

• The solutions for M_x and M_y describe the exponential decay, as a function of T_2 (i.e. T_2^*), of the magnitude of the projection of the bulk magnetization vector in the transverse (x-y) plane

$$M_{x}(t) = \left[M_{x,0} \cos(\omega_{0}t) - M_{y,0} \sin(\omega_{0}t) \right] e^{(-t/T_{2})}$$

$$M_{y}(t) = \left[M_{y,0} \cos(\omega_{0}t) + M_{x,0} \sin(\omega_{0}t) \right] e^{(-t/T_{2})}$$

Bloch equations of motion (T₁)

 The solution for M_z describes the exponential growth, as a function of T₁, of M_z along the +z axis, returning to its equilibrium value of M₀ following an RF pulse

$$M_z(t) = M_0 + [M_{z,0} - M_0]e^{(-t/T_1)} = M_{z,0}e^{(-t/T_1)} + M_0(1 - e^{(-t/T_1)})$$

- examples: following a 90° pulse ($M_{z,0}$ = 0)

$$M_{\tau}(t) = M_0(1 - e^{(-t/T_1)})$$

- examples: following a 180° pulse $(M_{z,0} = -M_0)$

$$M_z(t) = M_0(1 - 2e^{(-t/T_1)})$$

Measuring T₂ by line width or CPMG

- Spin-spin or Transverse relaxation
 - While peak width is related to T₂ not an accurate way to measure T₂

- Use the Carr-Purcell-Meiboom-Gill (CPMG) experiment to measure "spin-echo"
 - Refocuses spin diffusions due to magnetic field inhomogeneiety

CPMG

- The Carr-Purcell-Meiboom-Gill sequence (CPMG) experiment allows to measure transverse or spin-spin T_2 relaxation times of any nucleus.
- The experimental half-height line width (d) of a given resonance is directly related to $\mathsf{T_2}^*$ by the equation

 $d=1/(pi.T_2^*).$

In the measurement of the T₂ relaxation times, the magnetic field inhomogeneities (T₂^{inh}) must be considered:

 $1/T_2^* = (1/T_2) + (1/T_2^{inh}).$

CPMG pulse sequence

- The basic pulse sequence of the CPMG experiment is based on the spin-echo pulse sequence and consists of the following steps: (1) a 90° pulse creates transverse magnetization; (2) an *spin-echo period* (delay-180°-delay block) repeated n times, which determines the decay of the M_{xy} magnetization; and (3) signal acquisition performed as usual.

T₂ measurements with a Simple Hahn Echo or Spin Echo

Hahn Echoes as a Function of Inhomogeneous Line Width

T₂ Measurement with a CPMG Spin Echo Train

The Spin Echo through CPMG

CPMG: T₂ vs T₂*

T_2 vs T_2 *

CPMG: examples

Measuring T₁ by Inversion Recovery

 Measurement of T₁ is important, as the relaxation rate of different nuclei in a molecule can tell us about their local mobility. We cannot measure it directly on the signal or the FID because T₁ affects magnetization we don't detect. We use the following pulse sequence:

analyze after the π pulse:

 we are letting the signal decay by different amounts exclusively under the effect of longitudinal relaxation (T₁), we'll see how different t_D's affect the intensity of the FID and the signal after FT.

Measuring T₁ by Inversion Recovery

Measuring T₁ by Inversion Recovery

Spin Echo (T₂) vs Inversion Recovery (T₁)

T₁ from Inversion Recovery in MRI

Selective Nulling of Signals based on TI

STIR Short-TI Inversion Recovery

T2-FLAIR

TI = 180 msec

Fat
suppressed

TI = 400 msec White Matter suppressed TI = 2500 msec

CSF
suppressed