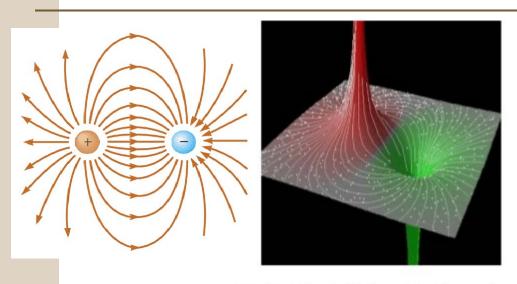
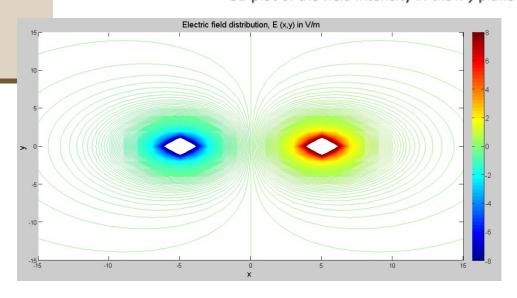
Magnetic properties of nuclear spins!

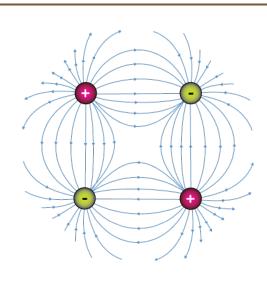
Classical Mechanical Roots:

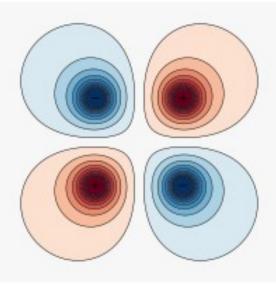
Nuclei of atoms are characterized by a *nuclear spin quantum number*, I, which can either be equal to zero, or to multiples of $\frac{1}{2}$. For atoms with I = 0 there is no nuclear spin and therefore, they cannot have a nuclear magnetic resonance. These atoms are called NMR silent. All other values of I (i.e., $I \neq 0$) yield nuclear spin.


- I = 0 (¹²C, ¹⁶O, etc.)

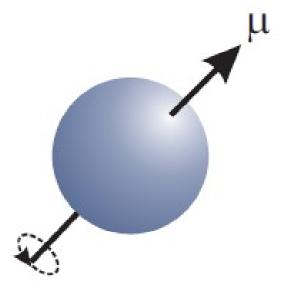
 Even mass # & Even atomic #


 No Nuclear spin
- $I = \frac{1}{2}$ (¹H, ¹³C, ¹⁵N etc.) Magnetic dipole moment Spherical charge distribution in nucleus
- I > $\frac{1}{2}$ (²H, ¹¹B, ²³Na etc.) Odd mass # & Odd atomic # (I = $\frac{1}{2}$ integer, i.e., $\frac{3}{2}$, $\frac{5}{2}$, $\frac{7}{2}$) Even mass # & Odd atomic # (I = whole integer, i.e., 1, 3) Ellipsoidal charge distribution in nucleus gives quadrupolar electric field. Magnetic quadrupole moment


Dipole Moment


VS Quadrupole Moment

3D plot of the field intensity in the x-y plane

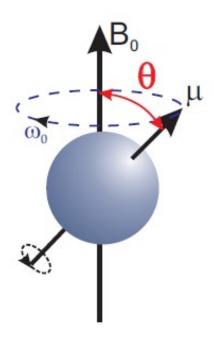

Angular momentum!

Nuclear spin results in *angular momentum* (p). Since the nucleus is charged, spin will produce a *magnetic moment* (μ):

$$\mu = \gamma p$$

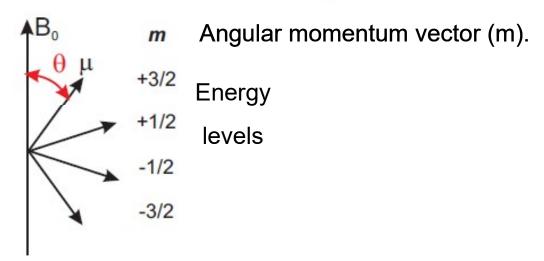
Where γ is the proportionality constant called the *magnetogyric ratio*.

Larmor Frequency!


Placed in an external magnetic field B₀ the spin precesses at a specific frequency:

$$\omega_0 = -\gamma B_0 \text{ rad s}^{-1}$$

or (in Hz)


$$\upsilon = -\gamma B_0 / 2\pi$$
 {Larmor Frequency}

The relative orientation of the magnetic moment (θ) is dependent on the value of I. This can be determined using quantum mechanics.

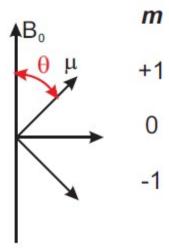
Energy levels and transitions (I = 3/2)!

General rule: The *number of orientations* of the precessing spin is equal to 2I+1. Therefore a nucleus with I = 3/2 there are four possible orientations of the magnetic moment :

The *allowed transitions* are across unit differences i.e., $\Delta m = 1$. For I = 3/2 there are three (degenerate) transitions:

$$-3/2 \leftrightarrow -1/2,$$

$$-1/2 \leftrightarrow +1/2$$

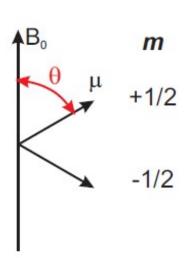

$$+1/2 \leftrightarrow +3/2$$

Energy levels and transitions (I = 1 and $\frac{1}{2}$)!

For I = 1 there are three orientations:

There are two allowed transitions across the three states:

$$\begin{array}{c}
-1 \leftrightarrow 0 \\
0 \leftrightarrow +1
\end{array}$$



Energy levels

For $I = \frac{1}{2}$ there are two orientations:

This is the simplest case because there is only one transition across the two states.

$$-\frac{1}{2} \leftrightarrow +\frac{1}{2}$$

Block equations, spin-relaxation!

When Bloch published his first observation of NMR in 1946 he separately published a paper with a physical description of the phenomenon. His theory uses a series of equations of motion for the net magnetization vector M of a sample of spins placed in a magnetic field (B_0). The components of M are M_x , M_y and M_z with initial equilibrium value of M_0 .

The Bloch
$$dM_z/dt = \gamma (M B)_z - (M_z - M_0)/T_1$$
Equations:
$$dM_x/dt = \gamma (M B)_x - M_x/T_2$$
$$dM_y/dt = \gamma (M B)_y - M_y/T_2$$

 T_1 is the *Spin-Lattice* relaxation time constant. It is the process that dictates how fast magnetization builds up along the z-axis.

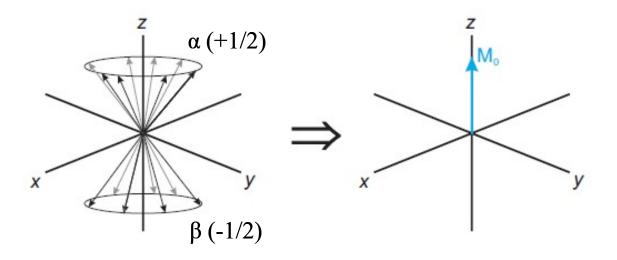
 T_2 is the *Spin-Spin* relaxation time constant. It is the process that dictates how fast magnetization is lost in the x-y plane.

. .

The Boltzmann distribution

• The sum of the z-components of the nuclear dipoles in an ensemble gives the macroscopic (bulk) magnetization, M_0

z, B_0

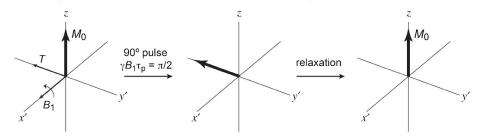

$$M_0 \approx \frac{N\gamma^2\hbar^2 B_0}{k_B T (2I+1)} \sum_{m=-I}^{I} m^2 \approx \frac{N\gamma^2\hbar^2 B_0 I (I+1)}{3k_B T}$$

 Note: dependence on γ², linear dependence on B₀, dependence on isotopic abundance (N)

The bulk magnetization with B₀

A collection of like spins (*ensemble*) will align themselves either parallel or anti-parallel to the orientation of the applied field B_0 (commonly labeled the **z**-axis).

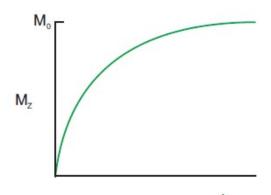
The *bulk magnetization vector* \mathbf{M}_0 represents the **z**-axis component of the excess lower energy spins.


This rationale forms the basis for the *Vector Model*, which we will explore in detail later.

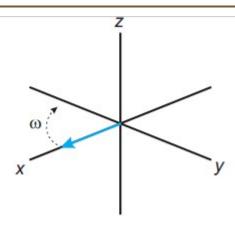
- RF Pulses are Required to Establish Initial Transverse Magnetization

- T₁ spin-relaxation moves M₀ back to +z axis

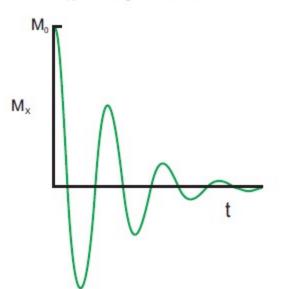
An RF pulse (B_1) in the transverse plane exerts a torque on M_0 that moves it through some angle (90° or $\pi/2$) toward the transverse (xy) plane


In these forms the Bloch equations show how magnetization reaches equilibration after a perturbation:

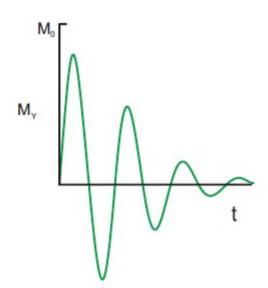
With time, normal relaxation processes return the system to thermal equilibrium, and M_0 returns to the +z-axis


The Z-component:

$$M_z = M_0 (1 - e^{(-t/T_1)})$$

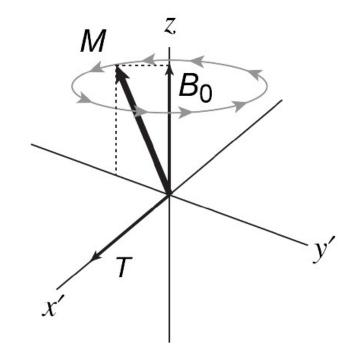


Free induction Decay (FID) on x-y plane


The X & Y components (*Free Induction Decay*):

 $M_X = M_0 \cos \omega t e^{(-t/T_2)}$

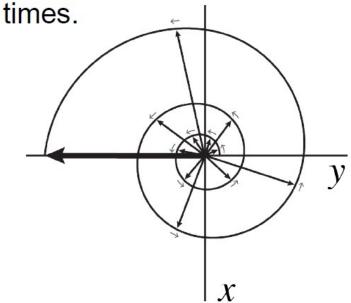
 $M_{\scriptscriptstyle Y}$ = $M_{\scriptscriptstyle 0}$ sin $\omega t \, e^{(-t/T_2)}$

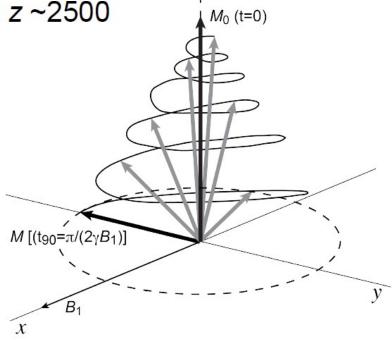


Precession

 The torque exerted by B₀ on the magnetic moments/dipoles promotes precession about the z-axis at a frequency given by

$$\upsilon_{L} = \gamma B_0 / (2\pi)$$
 (in Hz) $\omega_0 = \gamma B_0$ (in radians/sec)

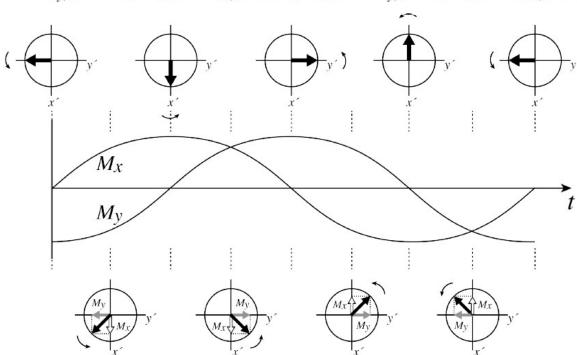

• The B_0 field also exerts a torque on the bulk magnetization vector (M). When displaced by an RF pulse from its equilibration position (along the z-axis), B_0 causes M to precess about z (at $\omega_0 = \gamma B_0$) until relaxation processes return it to its equilibrium position on z



Precession

• During an RF pulse, simultaneously B_1 moves M towards the transverse plane, and the torque exerted by B_0 on M causes M to precess about z at its Larmor frequency ($\omega = \gamma B_0$)

For a ¹H nucleus with a Larmor frequency of 500 MHz, during a 5 μs
 90° pulse, the M vector circles z ~2500



Bloch equations of motion (x-y plane)

 These equations give us the familiar result that a vector rotating in an x-y plane has projections on the x- and y-axes, the magnitudes of which exchange with time (ignoring relaxation)

$$M_{x}(t) = M_{x,0}\cos(-\gamma B_{0}t) - M_{y,0}\sin(-\gamma B_{0}t) = M_{x,0}\cos(\omega_{0}t) - M_{y,0}\sin(\omega_{0}t)$$

$$M_{y}(t) = M_{y,0}\cos(-\gamma B_{0}t) + M_{x,0}\sin(-\gamma B_{0}t) = M_{y,0}\cos(\omega_{0}t) + M_{x,0}\sin(\omega_{0}t)$$

Bloch equations of motion (T₁ and T₂)

 Relaxation processes occur during precession, so the Bloch equations are typically written to account for relaxation

$$\frac{dM}{dt} = \gamma \vec{M}(t) \times \vec{B} - (M_z - M_0)(1/T_1) - M_{x,y}(1/T_2)$$

 The component equations are then written as shown, and simplified assuming B_x = B_y = 0, and B_z = B₀


$$\begin{split} \frac{dM_{x}}{dt} &= \gamma \Big(M_{y}(t) B_{z} - M_{z}(t) B_{y} \Big) - \frac{M_{x}(t)}{T_{2}} = \gamma M_{y}(t) B_{0} - \frac{M_{x}(t)}{T_{2}} \\ \frac{dM_{y}}{dt} &= \gamma \Big(M_{z}(t) B_{x} - M_{x}(t) B_{z} \Big) - \frac{M_{y}(t)}{T_{2}} = -\gamma M_{x}(t) B_{0} - \frac{M_{y}(t)}{T_{2}} \\ \frac{dM_{z}}{dt} &= \gamma \Big(M_{x}(t) B_{y} - M_{y}(t) B_{x} \Big) - \frac{M_{z}(t) - M_{0}}{T_{1}} = -\frac{M_{z}(t) - M_{0}}{T_{1}} \end{split}$$

Bloch equations of motion (T₂)

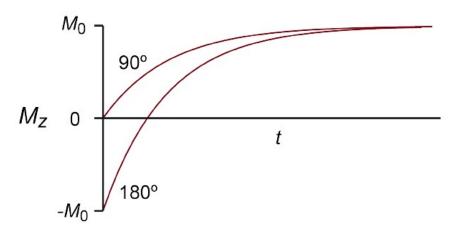
• The solutions for M_x and M_y describe the exponential decay, as a function of T_2 (i.e. T_2^*), of the magnitude of the projection of the bulk magnetization vector in the transverse (x-y) plane

$$M_{x}(t) = \left[M_{x,0} \cos(\omega_{0}t) - M_{y,0} \sin(\omega_{0}t) \right] e^{(-t/T_{2})}$$

$$M_{y}(t) = \left[M_{y,0} \cos(\omega_{0}t) + M_{x,0} \sin(\omega_{0}t) \right] e^{(-t/T_{2})}$$

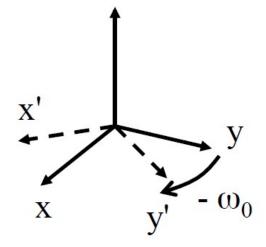
Bloch equations of motion (T₁)

 The solution for M_z describes the exponential growth, as a function of T₁, of M_z along the +z axis, returning to its equilibrium value of M₀ following an RF pulse


$$M_z(t) = M_0 + [M_{z,0} - M_0]e^{(-t/T_1)} = M_{z,0}e^{(-t/T_1)} + M_0(1 - e^{(-t/T_1)})$$

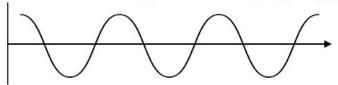
- examples: following a 90° pulse ($M_{z,0}$ = 0)

$$M_{\tau}(t) = M_0(1 - e^{(-t/T_1)})$$


- examples: following a 180° pulse $(M_{z,0} = -M_0)$

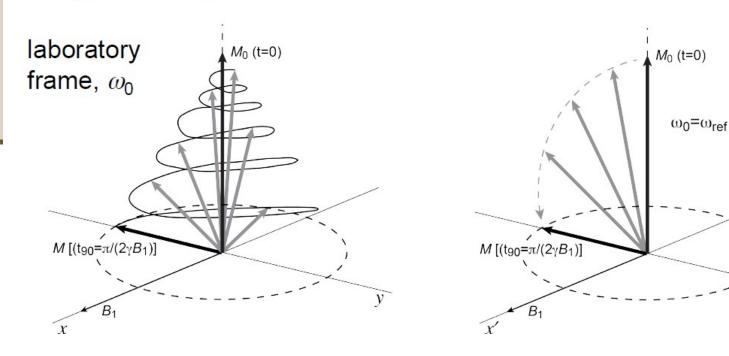
$$M_z(t) = M_0(1 - 2e^{(-t/T_1)})$$

The Rotating Frame Simplifies Analysis of RF Pulses and Small Frequency Offsets


- For a given type of nucleus (i.e. ¹H), Larmor frequencies (ω₀) are very high (~500 MHz for ¹H @ 11.74T)
- However, differences in Larmor frequencies are comparatively small (Hz, tens of Hz, kHz)
- It is convenient to subtract a reference $(\omega_{\rm ref})$ frequency from NMR signals similar in magnitude to the Larmor frequency. This is equivalent to rotating the cartesian axis system at this reference frequency (hence, "rotating frame")

Signal in laboratory frame (ω_0)

Signal in rotating frame (ω_0 - ω_{ref})


The Rotating Frame Simplifies Analysis of RF Pulses and Small Frequency Offsets

Example:

-in the *laboratory frame*, during an RF pulse, B_1 moves M towards the transverse plane, and the torque exerted by B_0 on M causes M to precess about z at its Larmor frequency ω_0 -in the *rotating frame* (with $\omega_0 = \omega_{\rm ref}$) there is no apparent precession

rotating frame

with $\omega_0 = \omega_{ref}$

