Magnetic properties of nuclear spins!

Classical Mechanical Roots:

Nuclei of atoms are characterized by a nuclear spin quantum
number, I, which can either be equal to zero, or to multiples of 1.
For atoms with I = 0 there is no nuclear spin and therefore, they
cannot have a nuclear magnetic resonance. These atoms are called
NMR silent. All other values of I (i.e., I # 0) yield nuclear spin.

I=0 (C, 70, 6lc)
Even mass # & Even atomic #
No Nuclear spin

=1/ (HL. . Nele) Magnetic dipole moment
Spherical charge distribution in nucleus

I[>1/) (1L."B."Naelc)
Odd mass # & Odd atomic # (I = V2 integer, 1.e., 3/2, 5/2, 7/2)
Even mass # & Odd atomic # (I = whole integer, i.e., 1, 3)
Ellipsoidal charge distribution in nucleus gives
quadrupolar electric field. Magnetic quadrupole moment



Dipole Moment VS Quadrupole Moment

3D plot of the field intensity in the x-y plane

Electric field distribution, E (x,y) in V/m -'".
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Angular momentum!

Nuclear spin results in angular momentum (p). Since the nucleus is
charged, spin will produce a magnetic moment (n):

n=yp

Where v is the proportionality constant called the magnetogyric
ratio.
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Larmor Frequency!

Placed in an external magnetic field B, the spin precesses at a
specific frequency:

w,=-7v B, rad s”
or (in Hz)

v =-vB,/2n {Larmor Frequency}

The relative orientation of the magnetic
moment (0) is dependent on the value of I.
This can be determined using quantum
mechanics.




Energy levels and transitions (I = 3/2)!

General rule: The number of orientations of the precessing spin is
equal to 2I+1. Therefore a nucleus with [ = 3/2 there are four
possible orientations of the magnetic moment :

AB, m  Angular momentum vector (m).

o i +3/2

Energy
+1/2

levels
-1/2
-3/2

The allowed transitions are across unit 3/2-1/2,

differences i.e., Am =1. For 1=3/2 there are 1/26+1/2
three (degenerate) transitions: +1/2 < +3/2




Energy levels and transitions (I = 1 and 2)!

For I =1 there are three orientations:

There are two allowed transitions across the
three states:

-1 &0
0« +1

For I = V2 there are two orientations:

This is the simplest case because there is only
one transition across the two states.
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levels
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Block equations, spin-relaxation!

When Bloch published his first observation of NMR in 1946 he
separately published a paper with a physical description of the
phenomenon. His theory uses a series of equations of motion for
the net magnetization vector M of a sample of spins placed in a
magnetic field (B,). The components of M are M, M, and M, with
initialequilibrium value of M,.

Th[‘ BIDCh dMEth i T(M B)z N (Mz_ Mu)/Ti
Huabions: dM,/ dt = y(M B), - M/ T,
dM,/ dt = y(M B), - M,/T,

T, is the Spin-Lattice relaxation time constant. It is the process that
dictates how fast magnetization builds up along the z-axis.

T,is the Spin-Spin relaxation time constant. It is the process that
dictates how fast magnetization is lost in the x-y plane.



The Boltzmann distribution

* The sum of the z-components of the nuclear dipoles in an
ensemble gives the macroscopic (bulk) magnetization, M,

242 / 232
M, = Ny“h"B, zmijyhBO](]-l_l)
kT (21 +1) T

m=—1

« Note: dependence on y?, linear dependence on B,,
dependence on isotopic abundance (N)



The bulk magnetization with B,

A collection of like spins (ensemble) will align themselves either
parallel or anti-parallel to the orientation of the applied field B,
(commonly labeled the z-axis).

The bulk magnetization vector M, represents the z-axis component
of the excess lower energy spins.
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This rationale forms the basis for the Vector Model, which we will
explore in detail later.



- RF Pulses are Required to Establish Initial

Transverse Magnetization

- T, spin-relaxation moves M, back to +z axis

An RF pulse (B,) in the transverse plane exerts a torque on M,that moves it
through some angle (90° or 11/2) toward the transverse (xy) plane

In these forms the Bloch equations show how magnetization

reaches equilibration after a perturbation:
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With time, normal relaxation processes return the system to
thermal equilibrium, and M, returns to the +z-axis

The Z-component:

M,

hf‘[i} (] * C[-t,"'l'-Ll)

M,




Free induction Decay (FID) on x-y plane

The X & Y components
(Free Induction Decay):

: 4/ Ts) = . /Ty
M, = M, cos ot e™ ™ M, = M, sin ot "™
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Precession

« The torque exerted by B, on the magnetic moments/dipoles
promotes precession about the z-axis at a frequency given by

v =yBy/ (2xn) (inHz)  wy, =y B, (in radians/sec)

« The B, field also exerts a torque on
the bulk magnetization vector (M).
When displaced by an RF pulse
from its equilibration position (along
the z-axis), B, causes M to precess

about z (at w, = y By) until relaxation
processes return it to its equilibrium
position on z




Precession

* During an RF pulse, simultaneously B, moves M towards the
transverse plane, and the torque exerted by B, on M causes M
to precess about z at its Larmor frequency (o = vy B,)

» For a '"H nucleus with a Larmor
frequency of 500 MHz, during a 5 us
90° pulse, the M vector circles z ~2500 A Mo (=0
times. . 4
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Bloch equations of motion (x-y plane)

« These equations give us the familiar result that a vector rotating
In an x-y plane has projections on the x- and y-axes, the
magnitudes of which exchange with time (ignoring relaxation)

M (t)=M ,cos(-yByt)—M  ,sin(=yByt) = M, cos(wyt)— M , sin(w,t)
M (1)=M ,cos(-yByt)+ M, sm(-yByt) = M ,cos(wyt) + M, sin(w,r)
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Bloch equations of motion (T, and T,)

« Relaxation processes occur during precession, so the Bloch
equations are typically written to account for relaxation
L~ PM ()% B =M = M) T)= M, ,(IT,)
: :

 The component equations are then written as shown, and
simplified assuming B,= B, =0, and B, = B

f”; L= y(M,(1)B,.- M (1)B,)- MU yM (1)B, - )

(i - ~

dM M (¢) M (1)
p = y(M_()B, - M ()B,)-———=-yM (1)B, -—

4 2 2

dM, M()-M, M()-M,

= (M, (OB, - M, ()B,)-

dt T f



Bloch equations of motion (T,)

» The solutions for M, and M, describe the exponential decay, as
a function of T, (i.e. T,*), of the magnitude of the projection of
the bulk magnetization vector in the transverse (x-y) plane

M (t)= [Mw cos(myt)-M sin((;uot)Je(‘”Tf)
M (1) = [M},,g cos(m,t)+ M _, Sill({.'uol‘)]e(_ﬁﬂ)
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Bloch equations of motion (T,)

» The solution for M, describes the exponential growth, as a
function of T,, of M, along the +z axis, returning to its
equilibrium value of M, following an RF pulse

DAL} =l [M:,_.o -M, ]G(_”Tl) =M ™"+ My(1-e"")

- examples: following a 90° pulse (M, = 0)
M_ ()= M,(1-e""")

- examples: following a 180° pulse (M, ,= -M,)
M (1) = M (1-2¢"")
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The Rotating Frame Simplifies Analysis of RF
Pulses and Small Frequency Offsets

For a given type of nucleus (i.e. 'H), Larmor frequencies (w,)
are very high (~500 MHz for 'TH @ 11.74T)

However, differences in Larmor frequencies are comparatively
small (Hz, tens of Hz, kHz)

It is convenient to subtract a reference (w,) frequency from
NMR signals similar in magnitude to the Larmor frequency. This
IS equivalent to rotating the cartesian axis system at this
reference frequency (hence, “rotating frame”)

t Signal in laboratory frame ()
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The Rotating Frame Simplifies Analysis of RF
Pulses and Small Frequency Offsets

« Example:

-in the /aboratory frame, during an RF pulse, B, moves M

towards the transverse plane, and the torque exerted by B,
on M causes M to precess about z at its Larmor frequency
-in the rotating frame (with w, = ) there is no apparent

precession
laboratory j'k Mo (t=0)
frame, w, 4,

|
L Mo (t=0)

rotating frame
with wg = Wy



