Introduction to Multidimensional NMR:
Recap NMR principles and 1D

How can we move the magnetization
off the Z-axis?

If we could apply a second magnetic
field that is perpendicular to the z-axis,
we would perturb the equilibrium by

forcing a precession. This w, precession
frequency is directly proportional to the
applied B, field strength.

;= v,
How do we physically do this?

Answer: We use the magnetic component of a radio frequency (RF)
wave. (Remember electro-magnetic radiation has a magnetic
component.) This RF irradiation is introduced to a sample by a coil
that is wound perpendicular to main field (B,).

This RF has to be at or near the resonance frequency to have an

effect.
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If we ignore relaxation, the y component of the magnetization will
simply oscillate at frequency ®, when B, is applied along the x-axis.
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We can control the final orientation of the o

magnetization by precisely setting the duration Vo o,
of the irradiation field.

If:
t, = n/2w, = 90° Pulse Width X ¥
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Other orientations are possible:

i i
t, = n/ o, =180° Pulse Width

i
t, = 2n/wy = 360° Pulse Width
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What do pulses do to
the populations of the
energy levels?
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Note: Energy levels
cannot provide any
insight to the
magnetization in the xy
plane.
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In these forms the Bloch equations show how magnetization
reaches equilibration after a perturbation:
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e 90° pulse )
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With time, normal relaxation processes return the system to
thermal equilibrium, and M, returns to the +z-axis

The Z-component: M,

M, =M, (1-e""™)
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80°,
d, (relaxation delay) t,
=4-5xT, I B
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The limitation of 1D NMR is solved by nD

1D '"H NMR |
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« How to assign 'H chemical shifts?

* What are the coupled 'H nuclei?



The importance of 2D NMR in structure
elucidation

2D 'H-"TH NMR : I
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General scheme of 2D and nD NMR

The general form of any 2D NMR sequence is:

Preparation

Evolution
«—>

t,

Mixing

Detection

t,

The Preparation and Mixing periods are a pulse or series of
pulses and fixed delays. The Evolution period is the varying
delay time (t,) where chemical shift or ] modulation occurs. The
Detection period (t,) is similar to the collection of 1D FIDs.

Taken further, nD NMR can have three or more time domains in
the general form:

Preparation

Evolution 1
—>

t,

Mixing 1

Evolution 2

-—

Mixing 2

6,

-
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Pulse sequences of 1D, 2D and 3D NMR
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Example:

1D, 2D and 3D NMR spectra of protein

side chainn CH,

side chain CH, GH,
aromatic ring -
rotons &
side chain NH,
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indole HN .
] ]

[

| 1
@Mwwuu',LMWMWJ u

|

|

fl

T T T
10 5

For proteins enriched with *°>N and 13C
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General scheme of 2D, nD NMR and 'H-'H COSY

A General Scheme: other mixing and evolution
periods can be added to increase dimensions

Preparation

Evolution 1
(Increment t1)

Mixing

Evolution 2

(observe t2)

time

Example: COSY — mixing is scalar coupling

d1l (recover)

90x

tl (evolve)

90x (mix)

t2 (observe)




Introduction to 'H-"H COSY
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Introduction to polarization transfer
heteronuclear NMR experiments

for

Polarization Transfer

The fundamental basis of
polarization transfer experiments
exploits the greater Boltzmann
population of a more sensitive
nuclei (S) like 'H and transfers it to
an insensitive (I) nucleus like "C.
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Introduction to INEPT by polarization transfer
for heteronuclear NMR experiments

Insensitive Nuclei Enhancement by Polarization Transfer
(INEPT).

The INEPT sequence provides a way of inverting one half of all HC
doublets regardless of chemical shift. It does this without the need
for selective pulses.

The sequence is an adaptation of the spin echo sequence.
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Pulse sequence of a gradient HSQC spectrum
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INEPT, HSQC and HMQC pulse sequences

90x 180x 90y
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Example of a 3D TH-'TH NOESY-TOCSY experiment
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Example of a 3D TH-'TH NOESY-TOCSY experiment

e Example: 3D NOESY-TOCSY of
parvalbumin (108 amino acids)
-8.7 mM
-170 hours (~ 7 days) o
-30,000 cross peaks !




Example of a 3D 'H-13C HMQC-COSY experiment

HMQC COSY
c I I dec]




Example of a 3D 'H-13C NOESY-HSQC experiment
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