A brief history of 2D NMR!

- In 1971, the idea of 2D NMR was proposed by Jean Jeener.
- The 1975 Ernst paper "Two-dimensional spectroscopy, application to nuclear magnetic resonance" utilized Jeener's idea to produce spectra.
- 1980s-present: application of NMR to protein structures
- In 1991 Ernst won a Nobel Prize in Chemistry for his contributions to Fourier Transform NMR

2D ¹H-¹H <u>COrrelation SpectroscopY</u> (COSY)

- One of the first, and most useful 2D experiments
 - one of the most common homonuclear experiments
 - workhorse experiment for small molecules to correlate coupled ¹H nuclei
 - 2- and 3-bond couplings mostly, but possible for longer range
 - good for correlating nuclei in small spin systems
- Deceptively simple looking experiment
 - preparation period: relaxation delay (d₁), then 90° x nonselective pulse to generate transverse magnetization for all ¹H nuclei
 - evolution period (t_1) , all evolve according to chemical shifts and J couplings

- coherence transfer resulting from the mixing period (second 90° x nonselective pulse) causes a portion of the magnetization for each spin to precess at the frequencies of coupled spins!
- crosspeaks (off-diagonal peaks) then identify frequencies of coupled spins

2D ¹H-¹H <u>COrrelation SpectroscopY</u> (COSY)

- Correlate chemical shifts of coupled nuclei in two dimensions
 - signals on diagonal are autocorrelated
 - signals off of the diagonal, crosspeaks, correlate chemical shifts of coupled nuclei (spectrum is symmetrical, each crosspeak appearing twice)
 - for proteins, is challenging to analyze some regions of COSY spectra for even small proteins

¹H-¹H COSY (90COSY, gCOSY, 45COSY, eCOSY, DQF-COSY)

¹H-¹H COSY (spin precession with increments)

¹H-¹H COSY (f2 and t1 interferogram)

As the time t₁ is increased the x and z component of the magnetization follows a specific function.

$$M_x = M_0 \sin (360 v t_1)$$

$$M_z = M_0 \cos (360 v t_1)$$

For our simple example we are only interested in the x component because data collection happens immediately after the second pulse. The FIDs at the different t₁'s give spectra like this:

¹H-¹H COSY (f2 x t1 - interferogram)

To achieve reasonable resolution and f_1 bandwidths there are many (50-1,000) t_1 increments taken. The longer t_1 lengths show considerable T_2 (T_2^*) relaxation.

Plotting the resulting peak amplitude versus t₁ yields a wave form that looks exactly like a FID. It is commonly called an *interferogram*.

The f_2 spectra are converted to t_1 domain data points in a process called *transposing*. Every data point across f_2 is included, not just the peak centers. Because of this requirement, the f_2 domain is collected with a minimum number of points (short AQ and narrow SW).

¹H-¹H COSY (producing 2D peaks)

FT'ing the complete transposed data set yields a series of 1D spectra. Aligning the resulting f_1 frequency domain spectra yields a **2D** stacked spectrum with a single peak at the shift frequency v in both dimensions. The data can also be represented by using a topography map style contour plot.

The outer ring of a contour plot represents the width of the peak at lower heights. The inner rings show how the pear narrows at higher slices.

¹H-¹H COSY (producing 2D diagonal peaks)

If we have two uncoupled resonances, both off resonance, the vector diagram will look like:

The resulting 2D transformation would give two resonances that fall on the diagonal. This concept is called *chemical shift evolution*. Almost all 2D sequences have evolution based on chemical shifts.

¹H-¹H COSY (peak pattern)

COSY

time domain

COSY

COSY

Necessity of quadrature detection on t₁

no quadrature: 32 peaks (should be 16)

- Without quadrature detection during t₁, the resultant COSY spectra after processing will lead to 2x actual number of peaks.
- The duplicated amount of peaks will be displayed either side of the RF transmiter (reference/carrier) frequency.
- Setting up quadrature detection as alternating phase of pulses (phase cycles), artifactual peaks can be eliminated.

"Phase Cycle" for COSY method

- Alternating phase of pulses on x- and y-axes will also alternate the functions as real and imaginary.
- Data will be stored as real and imaginary and phase cycles must be considering during data processing.
- Number of scans must be integral multiple numbers of steps used in phase cycle.

Phase cycle for COSY:

ϕ_1	ϕ_2	ϕ_3	memory
X	X	+	real, imag
X	У	+	imag, real
-X	X	_	real, imag
-X	У	-	imag, real

Another issue in COSY: dispersive and twisted auto-peaks (or cross-peaks)

Diagonal signals are products of dispersive components

- they give a twisted, dispersive lineshape

- these are problematic, especially in crowded regions of spectra, as they overlap and obscure (important) crosspeaks

- still, the long "tails" of the diagonal peaks remain (crosspeaks obscured)
- are many ways to collect COSY spectra, and some alleviate this problem

One solution: Double-Quantum Filtered COSY

- Double-quantum filtered COSY is one variation on the COSY method that helps to alleviate the diagonal peak problem
 - consider what happens to the multiple quantum terms that follow the second 90°x pulse when the third 90°x pulse is applied:

$$-2I_{xA}I_{yX} \xrightarrow{\frac{\pi}{2}I1x \frac{\pi}{2}I2x} -2I_{xA}I_{zX} \qquad -2I_{xX}I_{yA} \xrightarrow{\frac{\pi}{2}I1x \frac{\pi}{2}I2x} -2I_{xX}I_{zA}$$

- during the evolution period, these multiple quantum terms were precessing with the frequencies of A and X, and now have been converted back to observable single quantum magnetization
- With appropriate phase cycling, other terms are removed, so only those terms that precessed as multiple quantum survive
- The advantage is that all terms (those governing both diagonal and cross peaks) are pure absorptive (antiphase)
- Other types of signals are also filtered out by the doublequantum filter (contaminants, spurious peaks, solvent, any single line signals)

Coherence Transfer Pathways in 1D and DQF-COSY

Fig. 14 Coherence pathway diagram for an arbitrary one-pulse experiment (a) and DQF COSY experiment (b)

Coherence Transfer Pathways in 2D COSY with phase cycling

$$\phi_1 = x, \phi_2 = x, \phi_{rec} = x$$

COSY pulse sequence (top) with a presaturation pulse to suppress water signal. Also shown in the diagram are the coherence transfer pathway (middle) and phase cycling scheme (bottom).