PROBLEM SET 1, Phcg 631

- 1) Using a table of nuclear properties such as found at: http://www-usr.rider.edu/~grushow/nmr/NMR_tutor/periodic_table/nmr_pt_frameset.html examine the elements in the first two rows of the periodic table, find all the spin ½ isotopes and answer the following.
- 1a) What are the receptivities for these nuclei compared to protons?
- 1b) How do they compare if natural abundances are not included (comparing equal numbers of nuclei)?
- 1c) How do the frequencies depend on the magnetogyric ratios?
- 2) What is the *Larmor* frequency and how is it mathematically expressed?
- 3) What is the magnetogyric ratio (γ)?
- 4) What does the term **bulk magnetization** mean?
- 5) What are the Bloch Equations?
- 6) What are the two NMR spin-relaxation types that the Bloch Equations presented?
- 7) Which axis/plane each relaxation type is working?
- 8) How many energy levels does a spin = 1/2 nucleus have?
- 9) Correlate the differences between energy levels and transitions for NMR observation?
- 10) Why is NMR spectroscopy so insensitive?
- 11) What are the factors that limit the signal resolution in NMR?
- 12) What does the term **bulk magnetization** mean?
- 13) What do we mean when we observe the magnetization vector in the *laboratory frame*?
- 14) What do we mean when we observe the magnetization vector in the **rotating frame**?
- 15) What can be used to perturb the **bulk magnetization** from its equilibrium state?
- 16) Why do we want to make this perturbation?
- 17) Why does RF pulse have to be at or near the Larmor frequency?
- 18) What are shimming coils and what do they do for the NMR system?
- 19) What does the field-frequency lock system do for the NMR system?
- 20) What is necessary to induce a spin to relax?