
PROBLEM SET 3, Phcg 631

- 1a) How the 2D NMR experiments are generally divided in terms of their pulse sequences?
- 1b) Explain each of these composing parts of the 2D pulse sequences.
- 2) What type of structural information 2D COSY NMR spectrum can access on molecules?
- 3) Explain briefly each composing element of the 2D COSY pulse sequence and name them according to the general scheme of 2D pulse sequences.
- 4) Explain the differences between diagonal peak and cross-peaks in a COSY experiment in terms of chemical shifts of each dimension.
- 5) What is an interferogram?
- 6) What are the downsides of a regular COSY experiments and how we can overcome them?
- 7) What is the benefit of phase cycling in terms of the 2D NMR coherence transfer pathways?
- 8) What is the impact of 90° pulses on the 2D NMR coherence transfer?
- 9) Why the total number of scans should be multiple of the numbers of cycles used in phase cycling?
- 10) What are the pros and cons of the vector model and product operator formalism to understand the spin evolution during a 2D NMR experiment?
- 11) How COSY and TOCSY complement each other during spin and structural assignments?
- 12) What type of structural information 2D TOCSY NMR spectrum can access on molecules?
- 13) Explain briefly the composing elements of the 2D TOCSY pulse sequence and name them according to the general scheme of 2D pulse sequences.
- 14) Why setting up the right mixing time in a TOCSY experiment is a crucial step?
- 15a) Explain briefly the difference of hard and selective pulses in a NMR experiment.
- 15b) What are the pros and cons of each of these pulses?
- 16) What is the purpose of gradient pulses in a 2D NMR experiment?
- 17) Why is the TOCSY spectrum very useful in metabolomic studies?
- 18) Trace spin connectivities on the COSY spectrum below and make assignments of the horizontal 1D ¹H spectrum using the correspondent numbers of the carbon-bound ¹Hs on the displayed molecule.

